# 数据类型
ch03-02-data-types.md (opens new window)
commit 05d9c4c2312a6542f792492d17a62f79ad6dfd7b
在 Rust 中,每一个值都属于某一个 数据类型(data type),这告诉 Rust 它被指定为何种数据,以便明确数据处理方式。我们将看到两类数据类型子集:标量(scalar)和复合(compound)。
记住,Rust 是 静态类型(statically typed)语言,也就是说在编译时就必须知道所有变量的类型。根据值及其使用方式,编译器通常可以推断出我们想要用的类型。当多种类型均有可能时,比如第二章的 “比较猜测的数字和秘密数字” 使用 parse 将 String 转换为数字时,必须增加类型注解,像这样:
let guess: u32 = "42".parse().expect("Not a number!");
这里如果不添加类型注解,Rust 会显示如下错误,这说明编译器需要我们提供更多信息,来了解我们想要的类型:
$ cargo build
   Compiling no_type_annotations v0.1.0 (file:///projects/no_type_annotations)
error[E0282]: type annotations needed
 --> src/main.rs:2:9
  |
2 |     let guess = "42".parse().expect("Not a number!");
  |         ^^^^^ consider giving `guess` a type
error: aborting due to previous error
For more information about this error, try `rustc --explain E0282`.
error: could not compile `no_type_annotations`
To learn more, run the command again with --verbose.
你会看到其它数据类型的各种类型注解。
# 标量类型
标量(scalar)类型代表一个单独的值。Rust 有四种基本的标量类型:整型、浮点型、布尔类型和字符类型。你可能在其他语言中见过它们。让我们深入了解它们在 Rust 中是如何工作的。
# 整型
整数 是一个没有小数部分的数字。我们在第二章使用过 u32 整数类型。该类型声明表明,它关联的值应该是一个占据 32 比特位的无符号整数(有符号整数类型以 i 开头而不是 u)。表格 3-1 展示了 Rust 内建的整数类型。在有符号列和无符号列中的每一个变体(例如,i16)都可以用来声明整数值的类型。
表格 3-1: Rust 中的整型
| 长度 | 有符号 | 无符号 | 
|---|---|---|
| 8-bit | i8 |  u8 | 
| 16-bit | i16 |  u16 | 
| 32-bit | i32 |  u32 | 
| 64-bit | i64 |  u64 | 
| 128-bit | i128 |  u128 | 
| arch | isize |  usize | 
每一个变体都可以是有符号或无符号的,并有一个明确的大小。有符号 和 无符号 代表数字能否为负值,换句话说,这个数字是否有可能是负数(有符号数),或者永远为正而不需要符号(无符号数)。这有点像在纸上书写数字:当需要考虑符号的时候,数字以加号或减号作为前缀;然而,可以安全地假设为正数时,加号前缀通常省略。有符号数以补码形式(two’s complement representation) (opens new window) 存储。
每一个有符号的变体可以储存包含从 -(2n - 1) 到 2n - 1 - 1 在内的数字,这里 n 是变体使用的位数。所以 i8 可以储存从 -(27) 到 27 - 1 在内的数字,也就是从 -128 到 127。无符号的变体可以储存从 0 到 2n - 1 的数字,所以 u8 可以储存从 0 到 28 - 1 的数字,也就是从 0 到 255。
另外,isize 和 usize 类型依赖运行程序的计算机架构:64 位架构上它们是 64 位的, 32 位架构上它们是 32 位的。
可以使用表格 3-2 中的任何一种形式编写数字字面值。请注意可以是多种数字类型的数字字面值允许使用类型后缀,例如 57u8 来指定类型,同时也允许使用 _ 做为分隔符以方便读数,例如1_000,它的值与你指定的 1000 相同。
表格 3-2: Rust 中的整型字面值
| 数字字面值 | 例子 | 
|---|---|
| Decimal (十进制) | 98_222 | 
| Hex (十六进制) | 0xff | 
| Octal (八进制) | 0o77 | 
| Binary (二进制) | 0b1111_0000 | 
Byte (单字节字符)(仅限于u8) |  b'A' | 
那么该使用哪种类型的数字呢?如果拿不定主意,Rust 的默认类型通常是个不错的起点,数字类型默认是 i32。isize 或 usize 主要作为某些集合的索引。
# 整型溢出
比方说有一个
u8,它可以存放从零到255的值。那么当你将其修改为256时会发生什么呢?这被称为 “整型溢出”(“integer overflow” ),关于这一行为 Rust 有一些有趣的规则。当在 debug 模式编译时,Rust 检查这类问题并使程序 panic,这个术语被 Rust 用来表明程序因错误而退出。第九章 “panic!与不可恢复的错误” 部分会详细介绍 panic。在 release 构建中,Rust 不检测溢出,相反会进行一种被称为二进制补码包装(two’s complement wrapping)的操作。简而言之,值
256变成0,值257变成1,依此类推。依赖整型溢出被认为是一种错误,即便可能出现这种行为。如果你确实需要这种行为,标准库中有一个类型显式提供此功能,Wrapping(opens new window)。 为了显式地处理溢出的可能性,你可以使用标准库在原生数值类型上提供的以下方法:
- 所有模式下都可以使用
 wrapping_*方法进行包装,如wrapping_add- 如果
 check_*方法出现溢出,则返回None值- 用
 overflowing_*方法返回值和一个布尔值,表示是否出现溢出- 用
 saturating_*方法在值的最小值或最大值处进行饱和处理
# 浮点型
Rust 也有两个原生的 浮点数(floating-point numbers)类型,它们是带小数点的数字。Rust 的浮点数类型是 f32 和 f64,分别占 32 位和 64 位。默认类型是 f64,因为在现代 CPU 中,它与 f32 速度几乎一样,不过精度更高。
这是一个展示浮点数的实例:
文件名: src/main.rs
fn main() {
    let x = 2.0; // f64
    let y: f32 = 3.0; // f32
}
浮点数采用 IEEE-754 标准表示。f32 是单精度浮点数,f64 是双精度浮点数。
# 数值运算
Rust 中的所有数字类型都支持基本数学运算:加法、减法、乘法、除法和取余。整数除法会向下舍入到最接近的整数。下面的代码展示了如何在 let 语句中使用它们:
文件名: src/main.rs
fn main() {
    // 加法
    let sum = 5 + 10;
    // 减法
    let difference = 95.5 - 4.3;
    // 乘法
    let product = 4 * 30;
    // 除法
    let quotient = 56.7 / 32.2;
    let floored = 2 / 3; // 结果为 0
    // 取余
    let remainder = 43 % 5;
}
这些语句中的每个表达式使用了一个数学运算符并计算出了一个值,然后绑定给一个变量。附录 B 包含 Rust 提供的所有运算符的列表。
# 布尔型
正如其他大部分编程语言一样,Rust 中的布尔类型有两个可能的值:true 和 false。Rust 中的布尔类型使用 bool 表示。例如:
文件名: src/main.rs
fn main() {
    let t = true;
    let f: bool = false; // 显式指定类型注解
}
使用布尔值的主要场景是条件表达式,例如 if 表达式。在 “控制流”(“Control Flow”) 部分将介绍 if 表达式在 Rust 中如何工作。
# 字符类型
目前为止只使用到了数字,不过 Rust 也支持字母。Rust 的 char 类型是语言中最原生的字母类型,如下代码展示了如何使用它。(注意 char 由单引号指定,不同于字符串使用双引号。)
文件名: src/main.rs
fn main() {
    let c = 'z';
    let z = 'ℤ';
    let heart_eyed_cat = '😻';
}
Rust 的 char 类型的大小为四个字节(four bytes),并代表了一个 Unicode 标量值(Unicode Scalar Value),这意味着它可以比 ASCII 表示更多内容。在 Rust 中,拼音字母(Accented letters),中文、日文、韩文等字符,emoji(绘文字)以及零长度的空白字符都是有效的 char 值。Unicode 标量值包含从 U+0000 到 U+D7FF 和 U+E000 到 U+10FFFF 在内的值。不过,“字符” 并不是一个 Unicode 中的概念,所以人直觉上的 “字符” 可能与 Rust 中的 char 并不符合。第八章的 “使用字符串存储 UTF-8 编码的文本” 中将详细讨论这个主题。
# 复合类型
复合类型(Compound types)可以将多个值组合成一个类型。Rust 有两个原生的复合类型:元组(tuple)和数组(array)。
# 元组类型
元组是一个将多个其他类型的值组合进一个复合类型的主要方式。元组长度固定:一旦声明,其长度不会增大或缩小。
我们使用包含在圆括号中的逗号分隔的值列表来创建一个元组。元组中的每一个位置都有一个类型,而且这些不同值的类型也不必是相同的。这个例子中使用了可选的类型注解:
文件名: src/main.rs
fn main() {
    let tup: (i32, f64, u8) = (500, 6.4, 1);
}
tup 变量绑定到整个元组上,因为元组是一个单独的复合元素。为了从元组中获取单个值,可以使用模式匹配(pattern matching)来解构(destructure)元组值,像这样:
文件名: src/main.rs
fn main() {
    let tup = (500, 6.4, 1);
    let (x, y, z) = tup;
    println!("The value of y is: {}", y);
}
程序首先创建了一个元组并绑定到 tup 变量上。接着使用了 let 和一个模式将 tup 分成了三个不同的变量,x、y 和 z。这叫做 解构(destructuring),因为它将一个元组拆成了三个部分。最后,程序打印出了 y 的值,也就是 6.4。
除了使用模式匹配解构外,也可以使用点号(.)后跟值的索引来直接访问它们。例如:
文件名: src/main.rs
fn main() {
    let x: (i32, f64, u8) = (500, 6.4, 1);
    let five_hundred = x.0;
    let six_point_four = x.1;
    let one = x.2;
}
这个程序创建了一个元组,x,并接着使用索引为每个元素创建新变量。跟大多数编程语言一样,元组的第一个索引值是 0。
没有任何值的元组 () 是一种特殊的类型,只有一个值,也写成 () 。该类型被称为 单元类型(unit type),而该值被称为 单元值(unit value)。如果表达式不返回任何其他值,则会隐式返回单元值。
# 数组类型
另一个包含多个值的方式是 数组(array)。与元组不同,数组中的每个元素的类型必须相同。Rust 中的数组与一些其他语言中的数组不同,因为 Rust 中的数组是固定长度的:一旦声明,它们的长度不能增长或缩小。
Rust 中,数组中的值位于中括号内的逗号分隔的列表中:
文件名: src/main.rs
fn main() {
    let a = [1, 2, 3, 4, 5];
}
当你想要在栈(stack)而不是在堆(heap)上为数据分配空间(第四章将讨论栈与堆的更多内容),或者是想要确保总是有固定数量的元素时,数组非常有用。但是数组并不如 vector 类型灵活。vector 类型是标准库提供的一个 允许 增长和缩小长度的类似数组的集合类型。当不确定是应该使用数组还是 vector 的时候,你可能应该使用 vector。第八章会详细讨论 vector。
一个你可能想要使用数组而不是 vector 的例子是,当程序需要知道一年中月份的名字时。程序不大可能会去增加或减少月份。这时你可以使用数组,因为我们知道它总是包含 12 个元素:
let months = ["January", "February", "March", "April", "May", "June", "July",
              "August", "September", "October", "November", "December"];
可以像这样编写数组的类型:在方括号中包含每个元素的类型,后跟分号,再后跟数组元素的数量。
let a: [i32; 5] = [1, 2, 3, 4, 5];
这里,i32 是每个元素的类型。分号之后,数字 5 表明该数组包含五个元素。
以这种方式编写数组的类型看起来类似于初始化数组的另一种语法:如果要为每个元素创建包含相同值的数组,可以指定初始值,后跟分号,然后在方括号中指定数组的长度,如下所示:
let a = [3; 5];
变量名为 a 的数组将包含 5 个元素,这些元素的值最初都将被设置为 3。这种写法与 let a = [3, 3, 3, 3, 3]; 效果相同,但更简洁。
# 访问数组元素
数组是可以在堆栈上分配的已知固定大小的单个内存块。可以使用索引来访问数组的元素,像这样:
文件名: src/main.rs
fn main() {
    let a = [1, 2, 3, 4, 5];
    let first = a[0];
    let second = a[1];
}
在这个例子中,叫做 first 的变量的值是 1,因为它是数组索引 [0] 的值。变量 second 将会是数组索引 [1] 的值 2。
# 无效的数组元素访问
如果我们访问数组结尾之后的元素会发生什么呢?比如你将上面的例子改成下面这样,它使用类似于第 2 章中的猜数字游戏的代码从用户那里获取数组索引:
文件名: src/main.rs
use std::io;
fn main() {
    let a = [1, 2, 3, 4, 5];
    println!("Please enter an array index.");
    let mut index = String::new();
    io::stdin()
        .read_line(&mut index)
        .expect("Failed to read line");
    let index: usize = index
        .trim()
        .parse()
        .expect("Index entered was not a number");
    let element = a[index];
    println!(
        "The value of the element at index {} is: {}",
        index, element
    );
}
此代码编译成功。如果您使用 cargo run 运行此代码并输入 0、1、2、3 或 4,程序将在数组中的索引处打印出相应的值。如果你输入一个超过数组末端的数字,如 10,你会看到这样的输出:
thread 'main' panicked at 'index out of bounds: the len is 5 but the index is 10', src/main.rs:19:19
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrac
程序在索引操作中使用一个无效的值时导致 运行时 错误。程序带着错误信息退出,并且没有执行最后的 println! 语句。当尝试用索引访问一个元素时,Rust 会检查指定的索引是否小于数组的长度。如果索引超出了数组长度,Rust 会 panic,这是 Rust 术语,它用于程序因为错误而退出的情况。这种检查必须在运行时进行,特别是在这种情况下,因为编译器不可能知道用户在以后运行代码时将输入什么值。
这是第一个在实战中遇到的 Rust 安全原则的例子。在很多底层语言中,并没有进行这类检查,这样当提供了一个不正确的索引时,就会访问无效的内存。通过立即退出而不是允许内存访问并继续执行,Rust 让你避开此类错误。第九章会讨论更多 Rust 的错误处理。